I‘ T
I

wem
Ly

i

I
i

I - oL~
Er27 /
NASA Contractor Report 189588 / L/ /

Mechanically Verified Hardware
Implementing an 8-Bit Parallel IO
Byzantine Agreement Processor

J Strother Moore

Computational Logic, Inc.
Austin, Texas

Contract NAS1-18878
1992

NASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

(NASA-CR-189588) MECHANICALLY Vémw N92-2469‘57

HARDWARE IMPLEMENTING AN 8-BIT PARALLEL IO

BYZANTINE AGREEMENT PROCESSOR

(Computational Logic) 41 p CSCL 098 Unclas
G3/62 0081291

T ——

ﬂr -
FH

lmvm Jrw
i b

i

b i i

I\ e

meme
i il 4

)

iy
i

Cr

g
' SN

Abstract

Consider a network of four processors that use the Oral Messages (Byzantine Generals) ¢!gorithm of Pease,
Shostak and Lamport to achieve agreement in the presence of faults. Bevier and Young have published a
functionai cescription of a single processor that, when interconnected appropriately with three identical
others, implements this network under the assumption that the four processors step in synchrony. By
formalizing the original Pease, Shostak and Lamport work, Bevier and Young mechanically proved that
such a network achieves fault tolerance. In this paper we develop, formalize and discuss a hardware design
that has been mechanically proved to implement their processor. In particular, we formally define mapping
functions from the abstract state space of the Bevier-Young processor to a concrele state space of a
hardware module and state a theorem that expresses the claim that the hardware correctly implements the
processor. We briefly discuss the Brock-Hunt Formal Hardware Description Language which permits
designs both to be proved correct with the Boyer-Moore theorem prover and to be expressed in a
commercially supported hardware description language for additional electrical analysis and layout. We
briefly describe our implementation, which actually takes the form of a hardware design generator which
produces a design as a function of the desired word size. We exhibit the theorem that establishes that the
generator is correct. We exhibit the instance generated for sense data of width 8, in the syntax of NDL, a
hardware description language supported by LSI Logic, Inc. We exhibit some results of processing the
verified design with commercially availabie tools. We discuss two unrealistic aspects of our verified
design. (a) The use of parallel instead of serial io requires an excessive number of pins. (b) The
assumption that all four processors step in synchrony is implemented by having them share a common
clock— introducing an unacceptable single-point failure mode.

Keywords: hardware verification, fault tolerance, Byzantine agreement, Oral Messages algorithm,
automatic theorem proving, Boyer-Moore logic.

i L

Table of Contents

1.Background e e e 1

2. Mapping from Abstract States to Concrete Statescc. ..o 3

2.1. The Restricted Abstract State SPaceocvvvrerer e ireiiiiatinree, 3

2.2. The CONCrete State SPaCe . ..o vvvnrnvrnnrnnn s iasnoerr oo 5

23. The MapDOWNitiiiireriiat st ra s 6

24. The MapUp ...ttt enneenes P T 6

3. The Specificationcevievnriiiiii i 7

4. The IMpPIEMENIAtONvveernnr e nias s aaa s 8

0 D (173 v 1111 SRS R R R R 8

F R TR 003 111 o I R R S R R R R R R R 10

4.3, Other Submodules P 12

4. LSIED . v e e e et 13
5.The Theorem Proved by NQTHMt 14
6.CommentsonourDesign 15
Appendix A. The Formal Definition of LOCAL-STEP and GOOD-STATEP 16
Appendix B. The Formal Designoy 19
Appendix C. The NDLforLSTEP_8 ..., 27
Appendix D. Mechanically Produced Schematicsc.ooonvhnn 29

" \ G ; PRECEDING PA
ﬁi_l.m B iii GE BLANK NOT FlL.MED

1. Background

In [1] Bevir and Young describe a formalization of the *‘Oral Messages™ (or “‘Byzaniine Generals™)
algorithm of Pease, Shostak and Lamport [5] and a functional description of a processy that implements
the algosihir: in the case of a four processor network. They use the Boyer-Moore thcorem prover,
NQTHM {71 o check the Pease-Shostak-Lamport theorem and to prove that their abstract processor
correctly implements the algorithm for the case in question. They specify the processor by exhibiting a
function named local-step that is the state transition function, i.e., the function that, on each clock tick,
produces the next state of the processor. In this paper we implement that processor in the formalized
hardware description language (HDL) of Brock and Hunt and we exhibit a theorem, which has been proved
by NQTHM, that states that our hardware implements Local-step. Readers are urged to see [1] for
additional background material.

The processor reads sense data and inputs from its peers, exchanges this data in a certain fixed pattern
among the peers, and then votes on certain combinations of the exchanged data. The result of the vote is an
“‘interactive consistency vector’’ (‘‘icv’’) which contains four data objects in 1:1 correspondence with the
four processors. The icv in a processor indicates that processor’s ‘‘opinion”” of the final value of the sense
data in each of the four. Provided at most one processor is faulty, all nonfaulty processors hold identical
opinions about all the processors, including any faulty processor. This fact is proved informally but
precisely in [5]; it is stated formally and proved mechanically in [1]. In actual applications, the sense data
and all of the exchanged data are in fact bit vectors of some fixed length, though that restriction is
unnecessary in the abstract view of the processor and in its proof.

Bevier and Young formalize the processor by formalizing the notion of its “‘state’’ and its ‘‘state
transition”” function, the function which determines the next state given the sense data, the input from the
peers, and the current state. To model the network in which the four processors are connected, Bevier and
Young define a function called global-step which manages four independent procersor states and
transfers the outputs of each state to the appropriate inputs of the next state transition. This model of the
network implicitly assumes that all four processors execute in lockstep synchrony. If local-step is
taken as a low-level hardware design, in which one state transition by local-step describes one tick of
the microprocessor’s clock, then this assumption is naturally implemented by having the four processors
controlled by a common clock. If local-step is taken more abstractly, in which one siep by
local-step might require many microprocessor cycles, then this assumption might be implemented via
some rough clock synchronization algorithm and time abstraction. We take the view that Llocal-step is
a low-level specification and we designed our microprocessor to implement it directly. This is unrealistic
for two reasons. First, it requires the four processors to share a common clock, which introduces a potential
single-point failure mode. Second, it requires parallel io so that all the bits output by one processor on one
clock tick are available as input to the appropriate peer processor on its next cycle. But because we have so
many inputs and outputs, paralle! io makes excessive demands for pins. We return to these points after

presenting our design.

The state of the abstract processor, Local-step, is a 5-tuple constructed by state from
¢ a 3x3 mat rix of sense data read and obtained from peers;
* an output buffer obuf of length 3, each component of which is physically connected to a

fixed peer processor in such a way that the contents of that component on each cycle appears
as a certain input to the peer on its next cycle;

e the interactive consistency vector icw containing data objects (or a token denoting "no
majority”) representing the finally agreed upon values of the sense data in each of the four
peers;

¢ a 1ight which represents the final action taken by the processors upon reaching agreement,

{

ISSIV S

Iwu -
ek

"

bl

“u -
i

{0

.y

I o

and

e a counter, clock, which records the current ‘‘time’” modulo 8 and is used to sequznce the
device. o

Bevier and Young define the notion of a ‘‘good state” with good-statep which formalizes the
description above. See Appendix A.

The definition of local-step is

Deflnition.
(local-step input state)

(let ((sense (nth 0 input))
(p0 (nth 1 inmput))
{pl (nth 2 input))
(p2 (nth 3 input))
(clock (clock state)))
{case (remainder clock 8)
(0 (state (matrix state)
(make-list 3 sense)
(put 3 sense (icv state))
(light state)
(remainder (plus 1 (clock state)) 8}))
(1 (state (put 0 (list p0 pl p2) (matrix state))
(1ist pl p0 p0O)
{icv state) ,
(light state) '
(remainder (plus 1 {clock state)) 8)))
(2 (state (put 1 (list p0 pl p2) (matrix state))
(1ist (nth 2 (nth O (matrix state)))
{nth 2 (nth 0 (matrix state)))
{nth 1 (nth 0 (matrix state))))
(icv state)
(light state)
(remainder (plus 1 (clock state)}) 8)))
(3 (state (put 2 (list p0 pl p2) (matrix state))
(obuf state) '
{icv state)
(light state)
(remainder (plus 1 (clock state)) 8)))
(4 (state (matrix state)
(obuf state)
(compute-icv (matrix state) (icv state))
(light state)
(remainder (plus 1 (clock state)) 8)))
(5 (state (matrix state)
(obuf state)
(icv state)
{filter (icv state))
(remainder (plus 1 (clock state)) 8)))
{(otherwise
(state (matrix state)
(obuf state)
(icv state)
(light state)
(remainder (plus 1 (clock state)) 8))))).

The case and let abbreviations (supported by some local patches to NQTHM) should be self-
explanatory. The definition of 1ocal-step without these abbreviations may be found in Appendix A,
along with the definitions of the subfunctions. Roughly speaking, the function above produces a new state
as a function of the current state and the input. On each application, the clock is incremented by one
(modulo 8). When the clock is between 0 and 5, other components of the state are modified. The last two
cycles (6 and 7) are no-ops.

Our job is to construct a Formal HDL description of a module that implements this function and to prove
that we did so.

The Formal HDL we use is the descendant of that described by Brock and Hunt in [3]. (At the time of this
writing, the new Formal HDL has not yet been documented though we explain it brielly here.) The
language is connected to the hardware design tools of LSI Logic, Inc., via a Lisp progiam that translates
Formal HDL descriptions into LSI Logic’s Netlist Description Language (NDL). NDL is a conventional
hardware description language similar to Verilog™ [7]. Commercially available LSI Logic tools permit
one to analyze NDL descriptions to extract schematics, do layout, etc.

In this document we exhibit our implementation and the theorem that we claim establishes its correctness.
We sketch the Formal HDL to make our description somewhat self-contained, but we do not include the
definition of the HDL, nor do we even discuss (much less present the NQTHM events leading to) the proof
of correctness. However, the file of events, leading from NQTHM's ground-zero state through the
definition of the Brock-Hunt hardware interpreter, dual-eval, and thence onward to our implementation
of local-step and its correciness, is available upon request. The file may be processed by the released
NQTHM, but requires the loading of Bishop Brock's *‘fast clausifier’’ patch, available from CLI.

2. Mapping from Abstract States to Concrete States

The function we wish to implement, local-step, uses such abstract objects as the 5-ple stataes,
integers, the arbitrary sense data objects, etc. In order to implement it in digital hardware we must both
restrict it to certain kinds of sense data (e.g., bit vectors) and define a mapping from the abstract state space
10 a concrele state space.

The hardware description language we use imposes on us a formal definition of concrete states as
cons-trees of Boolean vectors. The shape of the tree depends on the hierarchical decomposition of the
hardware description. Thus, our description of the concrete state space foreshadows our final
implementation. Nevertheless, we describe the two state spaces (the restricted abstract one and the
concrete one) and the maps between them before exhibiting our implementation.

2.1 The Restricted Abstract State Space

Brock and Hunt define a bit vector to be recognized by bvp,
Definition .
(bvp x)

(i£ (nlistp x)
{(equal x ’'nil)
{(and (boolp (car x)) (bvp (cdr x)))).

We introduce the idea of a bit vector of width w,

Definition .
{(bvpn bv w)
(and (bvp bv) -

(equal (length bv) w)),
and the idea of a proper list of such bit vectors,
Definition .

] Uil e am {

|

-

0 i | Ll
[N n T

n

=

1 ey

KN
i

I nm
o

M

{

(all-bvpn lst w)
(if (nlistp lst)
(eg:al lst nil)
(and (bvpn (car lst) w)
(all-bvpn (cdr lst) w)))
In our restricted abstract states, sense data (and thus the exchanged and voted data) will always be bit
vectors of width w.

The icv of the abstract state will be restricted to being a list of length 4, the last element of which is a bit
vector of width w and the other three of which are either bit vectors of width w or else the object
(maj-token) indicating that no majority was found.

Definition.
(icvp lst w)

(and (equal (length lst) 4)

(or (bvpn (car lst) w)

(equal (car 1lst) (ma;-token)))
(or (bvpn (cadr 1lst) w)

(equal (cadr 1lst) (maj-token)))
(or (bvpn (caddr lst) w)

(equal (caddr lst) (maj-token)))
(bvpn (cadddr lst) w)
(equal (cddddr lst) nil))

Similarly, we require that the matrix and the output buffer of the restricted abstract state contain fixed
width bit vectors. We wrap all these restrictions up into a single predicate,

Definition .
(data-path-assumptionp state w)

(and (properp (matrix state))
(all-bvpn (nth 0 (matrix state)) w)
(all-bvpn (nth 1 (matrix state)) w)
(all-bvpn (nth 2 (matrix state)) w)
(all-bvpn (obuf state) w)
(icvp (icv state) w)).

The abstract state contains the 1ight which is set by the undefined function £iltex once the icv is
computed. We cannot implement either the 1ight or the filter in hardware since they are unspecified.
Therefore, the map up from concrete states to abstract ones must somehow recover from the concrete state
an icv upon which £ilter produces the required 1ight. Thus, if we are originally presented with an
abstract state whose 1ight is not the value of £ilter on some icv it will be impossible to map the state
down invertibly. We therefore impose on the abstract state space the additional restriction that the 1ight
of an abstract state be obtained by applying filter 0 some icvp-object. We avoid the implicit
existential quantification by passing the alleged object in as a *‘witness.”’ States for which there exists
such a witness are said to be *‘well-lit.”’ 7

Definition .
(well-litp state act-reg w)

(and (icvp act-reg w)
(equal (light state) (filter act-reg)))

Our restricted abstract state space is defined by

Definition.

(bevier-young-stataep state act-reg w)

(and (good-statep state)
(data~path-assumptionp state w)
(we.i-litp state act-reg w)),

which recognizes well-lit good states that satisfy the data path width assumption.

2.2 The Concrete State Space

The shape of a concrete state is determined by the hierarchical decomposition of our hardware description
and the conventions of the Formal HDL language. A concrete state will be a list of length nine with the
following components, arrayed in the order shown:

component structure types

cnt {c0 el ¢c2) three bits

matrix0 {(m00 m0l1l m02) three w-bit vectors

matrixl (m10 mll ml2) three w-bit vectors

matrix2 {m20 m21 m22) three w-bit vectors - o .
data-out {00 ol 02) three w-bit vectors

icv-reg (icv0 icvl icv2 icv3) four w-bit vectors

act-reg (a0 al a2 a3) ~ four w-bit vectors
icv-maj-existsp-reg (b0 bl b2) three bits

act-maj-existsp-reg (d0 di d2) " three bits

For example, (cnt stata) is defined to be {nth 0 state) and (act-maj-existsp-reg
_ state) isdefinedtobe (nth 8 state).

The recognizer for well-formed concrete states is:

Definition .

(hunt-brock-statep x w)

(and (properp x)

{(equal

(length x) 9)

{(bvpn (cnt x) 3)

(equal
(equal
(equal
(equal
(equal
(equal

(length (matrix0 x)) 3)
(length (matrixl x)) 3)
(length (matrix2 x)) 3)
{length (data-out x)) 3)
{length (icv-reg x)) 4)
(length (act-reg x)) 4)

(all-bvpn (matrix0 x) w)
(all-bvpn (matrixl x) w)
(all-bvpn (matrix2 x) w)
(all-bvpn (data-out x) w)

(all-bvpn (icv-reg x) w)

{all-bvpn (act-reg x) w)

(bvpn (icv-maj-existsp-reg x) 3)
(bvpn (act-maj-existsp-reg x) 3))

«n & u

[T

.

Come e L0

LI ({1]

I R T R ITL IRE

B[.

L

(o

L
1}

[

¢

[
i

2.3 The Map Down

We map the abstract icv onto the concrete icv by replacing (maj-token), when it occurs, by the bit
vector that is everywhere £. This is ambiguous, since that bit vector may be legitimate sense data. We
therefore maintain a 3-bit register, maj-existsp-reg, which is in 1:1 comrespondence with the first
three words of the concrete icv and in which an £ indicates that the corresponding 1cv word denotes
(maj-token).

Definition.
(icv-down icv w)
(list (if (equal (car icv) (maj-token))
(nat-to-v 0 w)
(car icv))
(if (equal (cadr icv) (maj-token))
(nat-to-v 0 w)
(cadr icv))
(if (equal (caddr icv) {(maj-token))
" (nat-to-v 0 w)
(caddr icv))
{(cadddr icv))

Here is how we sct maj-existsp-reg from the abstract icv:

Definition.
(maj-existsp-reg icv)

(l1ist (not (equal (car icv) (maj-token)))
(not (equal (cadr icv) (maj-token)))
(not (equal (caddr icv) (maj-token))))

To map an abstract state down (invertibly) we must know the witness for the 1ight of the abstract state.
This witness, which is another icv, we store in the act-reg and the act-maj-existsp-reg
(affording the (maj-token)s in the witness the same treatment as in the icv). Thus, we map an abstract
state down (with respect to a given witness act ~reg and data width w) with

Definition .
(down state act-reg w)

(nth 0 (matrix state))

(nth 1 (matrix state))

(nth 2 (matrix state))
(obuf state)
{icv-down (icv state) w)
(icv-down act-reg w) 7
(maj-existsp-reg (icv state))
(maj-existsp-reg act-reg)).

2.4 The Map Up

We invert the icv-down map with

Definition.
(icv-up icv icv-maj-existsp-req)

(list (if (car icv-maj-existsp-reg) (car icv) (maj-token))

(if (cadr icv-maj-existsp-reg) (cadr icv) (maj-token))
(if (caddr icv-maj-existsp-reg) (caddr icv) (m;-token))
(cadddr icv)), o

which is also used to recover the 1ight witness.

We then invert the down map with

Definition .
{up lst)

{state

Observe that after recovering the witness from act-reg and act-maj-existsp-reg we apply

(list (matrix0 lst) (matrixl lst) (matrix2 lst))
(data-out 1lst)
(icv-up (icv-reg lst)
(icv-maj-existsp-reg lst))
(filter (icv-up (act-reg 1lst)
(act-maj-existsp-reg lst)))
(v-to-nat (cnt lsat)))

filter toobtin the light.

3. The Specification

In the most literal sense, our goal is to exhibit a netlist that implements the Bevier-Young LOCAL-STEP
for some fixed data path width, w, namely 8. We exhibit such a netlist in Appendix C, where it is displayed
in the syntax of LSI Logic’s NDL. Let netlist be the formal analogue of that netlist, let module be the
formal analogue of the top-level module name, LSTEP_8, and let w be the data width 8. Then the

following theorem holds:

Theorem.

Main

(implies (and (bavier-young-statep state act-reg w)

{bvpn sense w)
(bvpn p0 w)
(bvpn pl w)
{bvpn p2 w)
{equal te f£)
(equal reset- t))
(equal (local-step (list sense p0 pl p2) state)
(up
(dual-eval 2 module
(append (list clk te ti reset-)
(append sense

{(append p0

(append pl p2))))

(down state act-reg w)
netlist))))

This theorem says that if

*state is a stale in our restricted abstract state space (whose light is witnessed by

act-reg and whose data path width is w), and

* sense, p0, pl, p2 are bit vectors of width w, and

¢ the *‘test enable’’ line, tea, to our module is low and the ‘‘reset when low’’ line, reset -, is

high,

then

0

'
|

i 11

e

"o

e |

ﬁ e
lil b

I - 1
il

[RRHA 1

b

o the Bevier-Young local-step applied to the given sense and input data in the given
abstract state o
is equal to the result of
» mapping the abstract state down to a concrete state (using the supplied witness),

o stepping the Brock-Hunt hardware model forward one siep on that concrete stete with our
given inputs, module, and netlist, and

e mapping the resulting concrete state back up.
Technically speaking, we do not actually cause NQTHM to prove this theorem. We actually define both a

netlist generator and a netlist recognizer, both of which take the data width, w>0, as a parameter. The
generator produces a list constant that is the formal HDL description of a netlist that implements

local-stap for the given data width. The recognizer returns t or £ according to whether a given netlist

is some extension of the one we generate for w. We then lead NQTHM to the proof of the theorem that if
the recognizer accepts a net1list defining module for width w>0 (where nat1list, module and w are
now universally quantified variables) then the interpretation of the module under the netlist computes
local-step in the sense illustrated above. We do not prove that our generator always constructs a
netlist satisfying the recognizer. Rather, we merely execute the generator on any chosen w, obtain a
concrete netlist, and then execute the recognizer on that netlist to observe that the generator worked for that
particular w. This is faster than proving that the generator always satisfies the recognizer, since one usually
only generates a small number of instances of the design.

4. The Implementation

Our implementation is decomposed into modules. We exhibit the module definition generators in
Appendix B. In this section we explain a few of the modules simply to illustrate the HDL and our
implementation.

4.1 Incrmt3

The following NQTHM function defines the implementation of the INCRMT3 module. The module takes
three bits in, 10...i2, and produces three bits, 00...02. If the two bit vectors are thought of as integers in
binary notation, then the specification of this module is that the output is the successor of the input, modulo
8. We state this specification formally later. The implementation defines the output, in terms of the input,
with combinational logic: o0 is the logical negation of 10; o1 is the exclusive-or of 10 and i1; and 02 is
the exclusive-or the intermediate signal s0 and i2, where s0 is the conjunction of 10 and i1.

Definition.
(incmt3%*) o Co T

‘ (incxmt3 (i0 il i2) (o0 ol 02)
((g0 (00) b-not (i0))
(gl (ol) b-xor (i0 il))
(g2 (s0) b-and (i0 il))
(g3 (02) b-xor (s0 i2)))
nil)

The module definition is a list of five parts. The first part, incxmt3, is the name of the module. The
second part, (10 il i2), is the list of input signals. The third part, (00 ol 02), is the List of output
signals. The fourth part is a list of ‘‘occurrences,” each of which is a list of the form (occ-name
output mod-name input) meaning that the signals listed in the output list are those produced by

the module mod-name with input input in the current state. The occurrence names, occ-name, €.4.,
g0, gi, etc., are irrelevant here. The fifth part of a module definition is the list of state-holding
occurrences. 'n the module above there are none so the list is nil. Note that the “"subwodules’ of
incrmt 3 (the modules used in its definition) are b-not, b-xor, and b-and. These are =i primitive but
in general they may be the name of other defined modules.
Incrmt3* can be thought of as a parameterized module generator that happens to have no parameters
(and thus is a constant). Many of our module generators take arguments that indicate the size of the data,
say, and use list processing functions to construct a suitable module definition. All of our module
generators have names that end in *,

In addition to its module definition generator, each module is associated with two other functions, a netlist
generator and a netlist recognizer. A netlist is just a list of module definitions. The netlist generator for a
module produces a list containing the definition of the module and all of its submodules. The netlist
generator for the incrmt 3 module is shown below.

Definition.
{incrmt3%netlist)

{cons (incrmt3¥). R
(union (b-not$netlist)
{(union (b-and$netlist)
{(b-xor$netlist))))

All of our netlist generators have names that end in $netlist.

The nedist recognizer for incrmt3 recognizes when a given netlist contains the definition of incrmt3
and all of its submodules.

Definition .
(incrmt3& netlist)

(and (equal (lookup-module ‘incrmt3 netlist) (incrmt3%))
(and (b-not& (delete-module ’'incrmt3 netlist))
(and (b-and& (delete-module ’'incrmt3 netlist))
(b-xor& (delete-module ’'incrmt3 netlist)))))

All of our netlist recognizers have names that end in & Because the netlist generators and recognizers can
be deduced from the module definitions, we henceforth discuss only the module definition generators.

To specify and prove the correctness of modules we must have a way of formally deriving their outputs and
state changes from their inputs and their definitions. Bishop and Hunt define the NQTHM function
dual-eval which can be thought of as an interpreter for their HDL. Dual-ewval’s first argument is a
flag that determines whether the function returns the signals output by the module or the new state created
by the module. The signal values are returned if the flag is 0 and the state value is returned if the flag is 2.
Other values of the flag have other meanings.

Using dual-eval we can state the correctness of incrmt 3.

Theorem .
(implies (and (incmmt3& netlist)
(bvpn i 3))
(equal (dual-eval 0 ’'incrmt3 i state netlist)
(nat-to-v (addl (v-to-nat 1i)) 3)))

This theorem says that if net1ist contains the definition of incrmt 3 and its submodules and i is a bit

0

[

[

mi

merd w1

"
s

{l

L
I

(-

IR
Wi

ilei I iy

'

o
!

]l

L

il

TR
1A

\”II
il

{

(RO N

{

10

vector of length 3, then the output produced by evaluating the incrmt 3 module with input i, in any state,
is obtained by converting i to a natural number, incrementing it by one, and converting the result into a
3-bit vector. This formula has been proved by NQTHM.

Observe that if we proceeded to use incrmt3 as a submodule in some other module, and then tried to
prove that module correct, the netlist recognizer for that superior module would insi that the netlist
recognizer for incrmt 3 were satisfied. Hence, if during the symbolic evaluation of that superior module
the question arose ‘‘what is the value of the incrmt3 module on x0...x2?"" the answer is provided by the
correctness theorem for incrmt3 above. Thus, this methodology lets us “‘stack™ modules and their
correctness theorems to build complex structures.

We can run a Common Lisp function on the definition of incrmt3 to translate it into NDL. The result is

- MODULE INCRMT3;

INPUTS I0,I1,I2;
OUTPUTS 00,01,02;
LEVEL FUNCTION;

DEFINE

G0(00) = IVA(IO);

Gl (01) = EO(IOQ, I1);
G2(s0) = AN2(IO,Il):
G3(02) = EO(S0,I2):
END MODULE;

“sexclusive or’’ and ‘‘and’’) are those supported by LSI Logic’s design tools

‘We can process this NDL description of the module with LSI Logic’s *‘schematic liberator”* and obtain the
mechanicaily drawn schematic diagram included in Appendix D.

4.2 Counter3

The following module, counter3-temp, merely conjoins the reset - signal with each of its other three
inputs. The three output signals of counter3-temp are thus £ if reset - is £ and are otherwise just the
three input signals.

Definition .
(counter3-temp*)

’ (counter3-temp (reset- il il i2)
(d0 d1 a2) B
((g0 (d0) b-and (reset- i0))
(g1 (d1) b-and (reset- il))
(g2 (d2) b-and (reset- i2)))
nil)

We use incrmt 3, counter3-tamp and our first state-holdirig device 1o construct countaer3.

Definition.
(counterit)
(list ’'counter3
' (clk te ti reset-)
(indices 'q 0 3)
(list (list 'reg
(indices ‘'q 0 3)

11

(index ’'reg 3)
(cons ‘clk
(cons 'te.. e
] (cons ‘ti (indices ‘d 0 3))))}

{list ’'inc

(indices ‘1 0 3)

‘incrmt3 ,

(indices 'q 0 3)) -
(list ‘g0

(indices 'd 0 3)

’counter3-temp

(cons 'reset- (indices ‘i 0 3))))

' reg)

The expression (index name i) constructs an indexed name, e.g., (index ’‘reg 3) may be
thought of as ' REG3. The expression (indices name 0 k) constructs the list of k consecutive
indexed names starting from index 0.

Thus, the module above takes four input signals, clk, te, ti and reset-, and produces three output
signals, q0...q2. The first three input signals are used in LSI Logic’s low level register module for the
clock, the test enable line, and the test input line. The two test signals atiow us to chain registers together
so as to load and read the state of a module serially. In our designs we use the te and ti inputs to build
such ‘‘scan chains.’” But we do not discuss them here and we have not proved that our scan chains work;
all our theorems contain the hypothesis that the te signal is £, which means that our theorems address
themselves only to the behavior of our modules in non-test mode.

The first occurrence above, the one named rag, says that the three output signals, q0...q2, are obtained
from the module reg3 by giving it the six inputs ¢lk, te, ti, d0...d2 in the current state. The reg3
module is a primitive module for a state-holding device of width 3. Its value is just the contents of the
current state (modulo the te and ti inputs which we do not further discuss). But the new state delivered
by reg3 is the list of three signals, d0...d2. Thus, this first occurrence sets the module output to the three
signals in the current state and makes the new state be d0...d2. But we have not defined these signals yet.

The second occurrence above, the one named inc, should be read ‘‘Let i0..i2 be obtained by
incrementing g0...q2 with the incrmt3 module. Thus, the 10...i2 represent the number one greater
(modulo 8) than the value returned by countaer3.

Finally, the third occurrence above, named g0, defines d0..d2 to be the result of applying
counter3-temp to the reset - signal and 10...i2.

Note that the fifth part of the module definition above is ' reg. This is the single occurrence of a
state-holding device in the module and it describes the state returned by this module. In this case, the state
is just the 3-bit state of the reg3 module. In general the fifth part of a module definition is either a single
occurrence name or a (possibly empty) list of occurrence names.

Functionally, the counter3 module can be thought of as operating on four signal arguments and a 3-bit
state and producing three signal values and a 3-bit state. The signals returned are just those in the state in
which counter3 is evaluated. The state returned is obtained by incrementing its current state by one
(modulo 8) and zeroing it if reset~ is £. This specification of counter3 is captured in the two
theorems shown below.

Wi . & u

1

LN

m,T" "

n‘ [u‘ m\ mm

i

12

Theorem . ' e
(implies (and (counter3& netlist)
(equal te £f)
{(bvp cnt)
(aqual (length cnt) 3))
{equal (dual-eval 0 ' counter3
(list clk te ti reset-)
cnt netlist)
cnt))

Theorem.
(implies (and (counter3& netlist)
(equal te f£)
(boolp reset-)
{bvp cnt)
(equal (length cnt) 3))
(equal (dual-eval 2 ’‘counter3
: oo : (list clk te ti reset-)
) cnt netlist)
(if reset-
(nat-to-v (addl (v-to-nat cnt)) 3)
(list £ £ £))}))

The first specifies the signals returned by counter3 and t}\e second specifies the state returned.

The NDL for the two modules is

MODULE COUNTER3-TEMP;
INPUTS RESET-,I0,Il1,I2;
OUTPUTS DO,D1,D2;

LEVEL FUNCTION;

DEFINE

GO (D0) = AN2 (RESET-, I0);
Gl (D1l) = AN2 (RESET-,I1);
G2 (D2) = AN2 (RESET-,I2);
END MODULE:

MODULE COUNTER3;

INPUTS CLK,TE, TI,RESET-;

OUTPUTS Q.0,Q.1,Q.2;

LEVEL FUNCTION;

DEFINE

REG(Q.0,Q.1,Q.2) = REG_3(CLK,TE,TI,D.0,D.1,D.2);
INC(I.0,I.1,I.2) = INCRMT3(Q.0,Q.1,Q.2);
G0(D.0,D.1,D.2) = COUNTER3-TEMP (RESET-,1.0,I.1,I.2);
END MODULE;

4.3 Other Submodules

Our implementation of local-step uses six modules in addition to the three explained above. We
merely describe them here. The corresponding module definitions are shown in Appendix B.

Split-3-to-6 takes the three bits returned by the counter3 module, which correspond t0
local-step’s clock, and retums six signals, 80...s5, with the property that siis t iff the three input bits
represent the number { in binary. This module is a demultiplexor. When the clock is 6 or 7, all the output

signals are £.

13

Majority3 is a module parametenzed by the data width n. It takes three n-bit vectors in. It delivers a
single bit, called ma j-existsp, and an n-bit vector. If there is a majority element among the three input
vectors, the module sets maj-existsp (o t and returns the majonty elemem Crherwise, it sets
maj-existp to £ and returns an n-bit vector of £.

Tv-if3 iniplements a nest of selectors (conditionals) that occurs several times in our implementation.
The moaule 1s parameterized by n. It takes the inputs ¢0, v0, c1, v1, c2, v2 and v3, where the ¢i are
single signals and the wi are bit vectors of width n. Its output is the n-bit vector specified by (1€ c0 v0
{if cl vl (if c2 v2 v3))).

Regs3 is a parameterized state-holding module that consists of three n-bit registers. It takes as input three
n-bit vectors (plus the usual clk, te, and ti used in all register modules), returns as its value the vectors

in the three registers, and stores its input vectors as the new state of the registers. We use regs3 to build a
row of local-step’s matrix.

Regs4 is like regs3 except operales on four n-bit vectors. We use regs4 to represent the icv-reg
and the act-reg.

v-buf-pwr is a parameterized n-bit buffer module, a device that passes its n bits of input through but has
more drive than a normal buffer. We use it in order to make our implementation acceptable to a certain
formally defined predicate that checks the loads and drives on all our signals.

4.4 Lstep

We now describe our implementation of Local-step. The module is called 1step. It is parameterized
by n, the sense data width. See Appendix B for the definition of the module.

Lstep takes the input signals clk, te, ti, reset- and four n-bit input vectors, sense, p0, pl and
p2. Itis a staie-holding module whose state s is satisfies (hunt-brock-statep s n). It retumns
seven n-bit vectors, o0, ol, 02, a0, al, a2 and a3, and one 3-bit vector, act-maj-existsp. The
three oi outputs represent local-step’s outputs to the three peer processors. The four ai outputs
represent the “‘actuator icv’’—the four vectors determining the light or final action taken by the
processor. The act-maj-existsp output indicates which of the first three a/ actually denote
{maj-token).

The occurrences in the module are roughly described as follows. The three matrix rows are defined as
instances of the regs3 module. Matrix element M02 is used so often we have to buffer it with
v-buf-pwr. We define the data~out register as another instance of regs3, and take our three n-bit
oi vectors from them. We define icv-rag as an instance of regs4. We define act-reg as an instance
of regs4 We define icv-maj-existsp-req and the act -maj-existsp-reg each as instances of

reg3.

We use countar3 to obtam and increment the clock and then use split-3-to-6 0 demulhplex it into
at most one “‘hot”’ signal. The six outputs are fanned out into the logic below so as to sequence the steps
comrectly. Two of the six, namely s1 and s2, are used so often that we have to buffer them in order to
drive all the dependent gates.

In the occurrences named g1 through g6-m22v, we use tv-i£3 and the primitive tv-if to shuffle data
between our inputs, data-out and the matrix rows as determined by which of the multiplexed clock

signalsis t.

1l

mm | ‘ m '”

|

L
al

I

14

In the occurrences named g7, g8, and g9 we vote on the appropriate combinations of mat rix elements,
using majority3 to obtain both the maj-existsp bit and the answer for each of the three votes. This
is done on every cycle but the results are ignored except when the clock signal s4 is £, when we put the
results into icv-reg and icv-maj-existsp-reg (in occurrences gll -icvOv through
gll-icv2v and g13). Atoccurrence gll-icv3v we put the sense input into icv3 when the clock
signal sQis t.

In occurrences g12-a0v through gl2-a3v we load act-reg from icv-reg if the clock signal 85 is
t. Atgl2-act-maj-exists weload act-maj-existsp-reg from icv-maj-existsp-regif
the clock signal s5is t.

Because 1step is parameterized we cannot exhibit an NDL dispiay of it. But we can exhibit the NDL for
an instance. In Appendix C we show some of the NDL generated for the 8-bit wide version of 1step. In
Appendix D we include the top-level schematic for that instance of 1step.

5. The Theorem Proved by NQTHM

We have proved the following theorem about 1step.

Theorem .
(implies
(and (not (zerop w))
(bevier-young-statep state act-reg w)
(1stepé netlist w)
(bvpn sense w)
(bvpn p0 w)
{bvpn pl w)
(bvpn p2 w)
(equal te f£)
(equal reset- t)) -
(equal (local-step (list sense p0 pl p2)
state)
(up (duval-eval ’'2 (index ’'lstep w)
(cons clk
(cons te
(cons ti
(cons reset-
" {append sense
(append p0
B (append pl p2)))))))
(down state act-reg w)
netlist))))

Observe the similarity between this theorem, proved by NQTHM, and the specification of the hardware,
Main. In particular, if we let w, above, be 8 and netlist, above, be (1step$netlist 8), and we

~ observe that (not (zerop 8)) and (lstepé (lstep$netlist 8) 8), then the indicated

instance of the theorem above is just Main. Put another way, if we generate a netlist of the desired width
with 1step$netlist and it passes the 1step& test (which can be determined by computation), then we
know the netlist implements local-step.

Part of the NDL translation of (1step$netlist 8) is shown in Appendix NDL.

It should be noted that the netlist produced by (1step$netlist 8) passes the NQTHM predicate that

15

checks adherence to various design rules, including those constraining the loads and drives in the net.

6. Comrnents on our Design

After obtaining NDL for our verified design, we used LSI Logic, Inc. tools to analyze the Jesign. One such
tool summanzes how our design uses the LSI gate array on which it could be built, the LMA9141C.

L2222 A A2 2R 2222t s A R A iRttt sl il A RarRi iR iantisdsdsd s]

* *
* LDS-III DESIGN VERIFIER NETWORK SUMMARY *
k 4 *
* PROJECT ID: _ L1A6477 LDS ACCOUNT NAME: MDEACCT1 *
* ARRAY NAME: LSTEP_8 ARRAY FAMILY: LMASK *
* ARRAY TYPE: LMAS141C *
¥ *
* CURRENT DATE: 09/04/91 CURRENT TIME: 16:26:10 *
* LMA9K LIBRARY DATE: 12/13/90 LMASK LIBRARY REVISION: 10.12.0%
* MEMIOK LIBRARY DATE: 08/09/90 MEMW10K LIBRARY REVISION: 10.09 =
w *

LA S22 22222222 s R b i sl it ottt st sl i sttty

* »*
* NETWORK STATISTICS AFTER CELL DELETIONS *
* *
* *
* NUMBER OF CELLS DELETED: ... «uuvverrnenneneenennennroneanenns o *
* NUMBER OF UNCONNECTED CELL OUTPUTS: ...ccvvvenvvnvnnnrnnnnenns 244 *
] ' *
* NUMBER OF INPUT PINS (EXCLUDING BIDIRECTIONAL PINS): ... 36 »
* NUMBER OF OUTPUT PINS (EXCLUDING BIDIRECTIONAL PINS): .. 59 *
* NUMBER OF BIDIRECTIONAL PINS:cu.vvvvcuneevennenennns 0 *
* TOTAL NUMBER OF I/O SIGNAL PINS USED:ccevvvvennnnn. 95 =*
* :
* RANGE OF POWER PINS REQUIRED (VSS & VDD) [min-max]: 08-16 *
* *
* NUMBER OF PAD LOCATIONS USED FOR INPUT PINS: 0 *
* NUMBER OF PAD LOCATIONS USED FOR OUTPUT PINS: 0 *
* NUMBER OF PAD LOCATIONS USED POR BIDIRECTIONAL PINS: ... O *
* TOTAL NUMBER OF PAD LOCATIONS USED FOR ABOVE: o *
* . *
* TOTAL NUMBER OF UNRESERVED PAD LOCATIONS AVAILABLE: 110
k *
* NUMBER OF I/O DEVICE LOCATIONS USED FOR BUFFERS: o =
* TOTAL NUMBER OF I/O DEVICE LOCATIONS AVAILABLE: 114 »
* *
* NUMBER OF CELLS USED: 791 NUMBER OF GATES USED: 3438
* NUMBRR OF CELL TYPBS: 12 ARRAY GATE USAGE (%): 24.34 *
* MAXINUM PINS PER NET: 169 ARRAY AREA USAGE (%): 24.34 »*
* MNETS WITH 10<PINS/NRT<=20: 3 NUMBER OF SIGNAL NETS: 826 *
* NETS WITH PINS/NET > 20: 2 AVERAGE PINS PER NET: 3.442
* *

EANRARAAR AR RA R AR AR AR AR AR AN ARANRANANRRAREARAT AR RAAATAAT AR AR RAAANAN

Observe that our design has 3438 gates. The number of io pins is 95. This is excessively high. It is due to
the fact that our design uses parallel io on 8-bit wide vectors. Recall that there are four 8-bit input vectors
plus four single-bit signals, for a total of 36 input pins. The module has seven 8-bit output vectors plus
three single-bit signals, for a total of 59 output pins. If one wished to exchange 32-bit wide sense data, the
number of pins required would be 359! OQur design is parameterized by the data size and our netlist
generator produces correct designs for arbitrary data sizes. But such a summary is deceptive because the
design is not practical for realistic data sizes.

A more sensible design would use serial io, devoting one pin to each of the channels on which full vectors
are currently exchanged. This would reduce the pin count to eighteen and allow arbitrarily sized data at the

a AT IR |

e |

wene

W

L]
[

{

it

'm
I

£

{

{

16

cost of waiting for it to stream in. In [4], we verify that a biphase mark communications protocol allows
reliable communication between two processors whose cycle times are within about 5% of each other. The
reader of this document will recognize that it would be straightforward to implement the biphase mark
specification in our Formal HDL and prove that we had done so. Proving that an HOL description
implemented ihe send and recv of [4] would be an exercise very similar to proving that lstep
implemenis Local-step—except it would be easier because there is no need lo parameterize the
implementation and the state mapping is much simpler. Indeed, the whole approach taken in [4] was
motivated by our concern that the verification of the implementation of send and recv be straightforward
and independent of all extraneous considerations. The straightforward implementation of those two
functions would allow data to be sent at the burst rate of 1.1M bps if we clocked the microprocessors at
20MHz and had a suitable channel between them.

Our 1step—even ignoring its excessive pin requirements— is not suitable for fault-tolerant applications
because of the common clock assumption. Qur processor implements local-step. Local-step was
proved by Bevier and Young to provide fault-tolerance when it was connected in a network with three
identical peers, all of which step in concert. More realistically, the four processors should each have an
independent clock. An algorithm like that verified in [6] should be used to get the processors in
approximate synchronization, so that they are all executing the same step of the algorithm during the same
time interval. Our model of asynchronous communications [4] would permit us to prove that two such
processors could communicate.

As we envision it, the low level specification of a realistic Byzantine agreement processor will be a
function, say async-local-step, which is like local-step but has a much finer temporal grain.
Async-local-step will break each of the six steps of local-step into hundreds cycles and allow
for serial communication, clock synchronization, and a certain amount of waiting to keep each major step
sufficiently large to insure that all processors step more or less together. Under an appropriate state
mapping, which would necessarily include some time abstraction, async-local-step could be shown
to implement local-step. The Formal HDL design would use async-local-step, not
local-step, as the specification. We offer this sketch of a realistic design effort merely to emphasize
how far we are from having achieved it.

Appendix A. The Formal Definition of LOCAL-STEP and GOOD-STATEP

Deflinition .
(length 1)

(1f (listp 1)
(addl (length (edr 1)))
a)

Shell Definition.
Add the statae of five arguments
with recognizer st atep and
accessors matrix, obuf, icv, 1ight and clock.
Deflaition .
(make-1ist length initial-value)
(1f (zerop length)

nil

(cons initial-value

(make-list (subl length) initial-value)))

Definition .
(nth n 1)

(1f (listp 1)

17

(1 (zerop n)
{car 1)
(ath (subl n) (edr 1)))

0) -

Deflnition .
(put n v 1)

(L4 15 0y
(1£f (ze
(cons v {cdr 1))
(cons {car 1) (put (subl n) v (edr 1)}))

1)

Definition .
(nth2 1 3 x)

(nth 3 (ath i x))

In the original Bevier-Young work, MAJORITY was introduced by constraint. However, the function was
constrained to the point of being uniquely defined. We simply define it and its companion,
MAJORITY-EXISTS. In our mechanical proof script we include the events that establish that our
functions satsfy the constraints imposed on theirs. The uniqueness of their functions is not proved in our
script, though we have (elsewhere) led NQTHM 1o that conclusioi.)

Definition .
{occurrences
x 1)

(1f (listp 1)
(if (equal x (car 1))
{(addl (occurrences x (cdr 1)))
" {occurrences x (cdr 1)))
0)
Deflnition .
(majorityl cands votes)

(if (1istp cands)
(1f (lessp (length votes)
(times 2 (occurrances (car cands) votes)))
{car cands)
(majorityl (cdr cands) votes))
0)

Deflnition .
(majority-existsl cands votes)
=
(1f (listp cands)
(or (lessp (length votes) (times 2 (occurrences (car cands) votes)))
(majority-existsl (cdr cands) votes))
f)

Shell Definition.

Add the shell maj-token
with recognizer ma -t okenp.
Definition .

(majority votes)

(if (majority-existsl votes votes)
{majorityl votes votaes)
(maj-token))

Definition .
(majority-exists votes)
=

(majority-existsl votes votes)
Definition .

L

|

U

LB
I

{ {

g

ny
il &

o
i

Lo {

e

{

Il

!l
i il

r

Cr

18

(compute-icv matrix icv)

{put 0
{majoricvy (list (nth2 0 0 matrix)
(nth2 1 2 matrix)
(nth2 2 1 matrix})))
{put i
(majority (list (nth2 0 1 matrix)
{(nth2 1 0 matrix)
(nth2 2 2 matrix))})
(put 2
{majority (list (nth2 0 2 matrix)
(nth2 1 1 matrix)
(nth2 2 0 matrix)))
iev)))

The Bevier-Young function £ilter was introduced by constraint. We do not need any properties of
£ilter and thus introduce it by declaration (i.e., as an undefined, unconstrained function symbol).

Undefined Function .
(filter icv)

Deflnition .
(tablep n 1)
(if (1istp 1)
(and (equal (length (car 1)) (fix n))
(tablep n (cdr 1)))
t)

Deflnition .

(matrixp 1 3 1)

(and (equal (length 1) (fix 1))
(tablep j 1))

Deflnition .

(good-statep x)

(and (statep x)
(matzrixp 3 3 (matrix x))
(equal (length (obuf x)) 3)
(equal (length (icv x)) 4)
(numberp (clock x))
(leasp (clock x} 8))

Definition .
(local-step input state)
(if (equal (remainder (clock state) 8) 0)
(state (matrix state)
(make~1list 3 (nth 0 input))
{(put 3 (nth 0 input) (icv state))
{(light state)
(remainder (plus 1 (clock state)) 8))
(1f (equal (remainder (clock state) 8) 1)
(state (put 0
(list (nth 1 input)
(nth 2 input)
(nth 3 input))
(matrix state))
(list (nth 2 input)
(nth 1 input)
(nth 1 input))
(icv state)
{(light atate)
(remainder (plus 1 (clock state)) 8))
(1f (equal (remainder (clock state) 8) 2)
{(state (put 1
(list (nth 1 input)

19

{(nth 2 input)
{ath 3 input))
(matrix state))
{list (nth 2 (nth 0 (matrix state)})
(nth 2 (nth 0 (matrix state)))
(nth 1 (nth 0 (matrix state})))
{icv state)
(1ight state)
(ramainder (plus 1 (clock state)) B8))
(1f (equal (remainder (clock state) 8) 3)
(state (put 2
(list (nth 1 input)
{nth 2 input) _____
(nth 3 input) nil)
(matrix state))
(obuf statae)
(icv_state)
(1ight state)
(remainder (plus 1 (clock state)) 8))
(if (equal (remainder (clock state) 8) 4)
{state (matrix state)
(obuf state)
(compute-icv (matrix state) (icv state))
(light state)
(remainder (plus 1 (clock state)) 8))
({f (equal (remainder {clock state) 8) 5)
(state (matrix state)
{(obuf state)
{(icv state)
(filter (icv state))
(remainder (plus 1 (clock state)) 8))
(state (matrix atate)
(cbuf state)
{icv state)
{light state)
(remainder (plus 1 (clock state)) 8)))})))))

Appendix B. The Formal Design

We exhibit the functions that generate each our modules. For each such generator, fa*, there is also a
netlist generator /A$NETLIST and a netlist recognizer fn&. The netlist generator retums a list of the
generated module and each of its submodules. The netlist recognizer checks that the given nedist contains
the generated module and each of the required submodules.

Definition.
(INCRNT3*)
* (INCRMT3 (IO Il I2)
(00 01 02)
((GO (00) B-MOT (IO0))
(61 (01) B-XOR (I0 Il))
(G2 (80) B-AND (IO I1)) - S s
(G3 (02) B-XOR (S0 I2)))
WIL)

Definition. . R
(COUNTER3-TEMP*) -
* (COUNTER3-TEMP (RESET- IO I1 I2)
(DO D1 D2) = _
((G0 (DO) B-AND (RESET- IO))
(Gl (Dl1) B-AND (RESET- I1))
(G2 (D2) B-AND (RESBT- I2)))
NIL)

Deflnition .

Wown o« o§ 0 s oW oW w4

A

s

lﬂl\ Kl

(COUNTER3*) B
=
(LIST ‘COUNTER3
.. * (CLX TE TI RESET-)
N {INDICES ’'Q 0 3)
— (LIST (LIST 'REG
(INDICES 'Q 0 3)
(INDEX 'REG 3)
(CONS ’CLK
(CONS 'TE
(CONS 'TI (INDICES ‘D 0 3)))))

mon
"

t

(LIST 'INC
(INDICES 'I 0 3)
 TNCRWT3
(INDICES 'Q 0 3))
(LIST 'GO
{(INDICES 'D 0 3)
* COUNTER3 - TEMP
(CONS ‘RESET- (INDICES 'I 0 3))))

[

{

LT 0
Ve

' (REG))

Definition .
(SPLIT-3-T0-6%)

L
ui

(

* (SPLIT-3-T0-6 (CO Cl C2)
- (80 81 82 83 sS4 s5)
((GO (NCO) B-NOT (CO))
(Gl (NC1) B-NOT (C1l))
(G2 (NC2) B-NOT (C2))
(G3 (SO0) B-AND3 (NCO NC1 NC2))
(G4 (S1) B-AND3 (CO WC1l WC2))
(G5 (S2) B-AND3 (NCO Cl NC2))
(G6 (S3) B-AND3 (CO C1 RC2))
(G7 (S4) B-AND3 (NCO NC1l C2))
(G8 ($5) B-AND3 (CO WCl1l C2)))
NIL)

I
[

¢

I‘"“

FER]
i b

Definition .
(MAJORITY3* N)

(LIST (INDEX ’'MAJORITY3 M)
(APPEND (INDICES 'X 0 N)
(APPEND (INDICES 'Y O N)
(INDICES 'Z 0 W)))
e (CONS ’MAJ-EXISTSP (INDICES ‘A 0 N))
(LIST (LIST 'GO ' (EO)
(INDEX 'V-EQUAL N)
e (APPEND (INDICES ‘X O N)
o {INDICES 'Y 0 W)))
Lo (LIST '61 ' (1)
(INDEX ‘V-EQUAL N)
(APPEND (INDICES ’'X 0 N)
) (INDICES 'Z 0 N}))
-~ (LIST ‘G2 ' (B2)
(INDEX ‘V-EQUAL N)
(APPEND (INDICES 'Y O N)
(INDICES ‘Z 0 N)))

o
i

- (LIST 'GZA
(INDICES 'ZERO 0 N)
(INDEX ’V-XOR N)
;=3 (APPEND (INDICES ‘X 0 N)
«a (INDICES 'X 0 N)))
‘(63 (MAJ-EXISTSP) B-OR3 (20 E1 R2))
(LIST 'G4 (INDICES 'C 0 W)
e (INDEX ' TV-IF
- (TREE-NUMBER (MAXE-TREE K)))
| (CONS 'B2
(APPEND (INDICES 'Y O W)
(INDICES ‘ZERO 0 N))))

(LIST 'G5 (INDICES ‘B 0 N)
(INDEX 'TV-IF
(TREE-NUMBER (MAKE-TREE N)))
(CONS "Bl
(APPEND (INDICES 'X 0 N)
(INDICES 'C 0 N)}))
(LIST 'G6 (INDICES ‘A O N)
(INDEX ’'TV-IF
(TREE-NUMBER (MAKE-TREE N))) - - =
(CONS 'BO
(APPEND (INDICES ‘X O N)
(INDICES ‘B 0 N)))})

NIL)
Definition .
{(TV-IF3* N)
(LIST (INDEX ’'TV-IF3 N)

(CONS ’CO

(APPEND (INDICES 'V0 0 N)
(CONS 'C1
(APPEND (INDICES '‘V1 0 N)

(CONS 'C2
(APPEND (INDICES ‘V2 0 N)

(INDICES 'V3 0 N)))))))

(INDICES ’OUTPUT O N)
(LIST (LIST ‘GO (INDICES 'T1 O N)
(INDEX ‘' TV-IF
(TREE-NUMBER (MAKE-TREE N)))
(CONS 'C2 o
(APPEND (INDICES ‘V2 0 N)
(INDICES ‘V3 0 W))))
(LIST 'Gl (INDICES 'T2 O W
(INDEX 'TV-IF e
(TREE-NUMBER (MAKE-TREE N)))
(CONS 'C1
(APPEND (INDICES 'V1i 0 N)
{INDICES 'T1 0 N))))
(LIST 'G2 (INDICES ‘OUTPUT O N)
{INDBX ’'TV-IF
(TREE-NUMBER (MAKE-TREE N)))

(CoNs ’co e

NIL)

Deflnition .
(REGS3* W)
(LIST (INDEX ‘'REGS3 W)
({CONS 'CLK
{(CONS 'TE -
(CONS 'TI - -
(APPEND (INDICES 'RO 0 N)
(APPENRD (INDICES 'R1 O N)
(INDICES 'RZ 0 N))))))

(APPEND (INDICES ‘Q0 O N)
{APPEND (INDICES ‘Ql 0 N)
_(INDICES 'Q2 0 N)))
(LIST (LIST 'RRGO (INDICES ‘Q0 O N)
(INDEX ’'REG N)
(CONS 'CLK - T
(CONS TR
(CONS 'TI (INDICES 'RO O N)))))
({LIST 'REGl1 (INDICES 'Ql 0 N)
{INDEX ‘REG N)
{CONS 'ClLK
(CONS 'TER
{CONS (INDEX ‘QO0 (SUBl N))

21

ul

] [[]

T

v

‘ru“wn‘
LIy

t

o

o
W

C {

L

22

(INDICES 'R1 0 N)}}))
(LIST 'REG2 (INDICES 'Q2 0 N)
(INDEX 'REG N)
(CONS 'CLK
(CONS 'TR
(CONS (INDEX ’'Ql (SUBL N))
(INDICES 'R2 0 N)))))
‘ (RRGO REG1 REG2))

Definition .
(REGS4* N)
(LIST (INDEX 'REGS4 N)
(CONS ’'CLK
(CONS ’'TB
(CONS ’TI
(APPEND (INDICES 'RO 0 N)
(APPEND (INDICES 'R1 0 N)
“ "{APPEND (INDICES ‘R2 0 N)
(INDICES ‘R3 O N)))))))
(APPEND (INDICES Q0 O N)
(APPEND (INDICES 'Ql 0 N)
(APPEND (INDICES ’'Q2 O W)
(INDICES ‘Q3 0 W))))
(LIST (LIST ‘REGO (INDICES 'Q0 O N)
(INDEX 'REG N)
(CONS 'CLK
(CONS 'TE
(CONS 'TI (INDICES 'RO 0 N)))))
(LIST 'REG1 (INDICES 'Ql 0 N)°
(INDEX ‘'REG W)
(CONS ’'CLK
(CONS 'TE
{CONS (INDEX ‘QO0 (SUBl N))
(INDICES 'R1 0 N)})))
(LIST 'REG2 (INDICRS ’'Q2 0 N)
(INDEX ’‘REG N)
(CONS 'CLK
(CONS 'TB
{CGNs (INDEX ’'Ql (SUB1l N))
(INDICES ‘R2 0 W)))))
(LIST ‘REG3 (INDICES 'Q3 0 W)
(INDEX ’'REG N)
(CONS 'CLK
(CONS 'TB
(CONS (INDEX ’'Q2 (SUBl1l N))
(INDICES ‘R3 0 N))))}))
' (REGO REG1 REG2 RBG3))

Deflnition .
(V-BUF-PWRS$BODY M N)

(IF (ZEROP N)
WIL
(CONS8 (LIST (INDEX ‘G M)
{LIST (INDEX 'Y N))
'B-BOP-PWR ~ T~ T
(LIST (INDEX 'A M)))
(V-BUP-PWRSBODY (ADD1 M) (SUB1L W))))

Deflnition .

(V-BUF-PWR* N)

(LIST (INDEX ’'V-BUF-PWR N)
(INDICBS ‘A O N)
(INDICBS 'Y 0 N)
(V-BUF-PWRSBODY 0 N)
NIL)

Definition .

23

(LSTERP* N)
(LIST
(INDEX 'LSTEP N)
(CONS *CLX

(CONS 'TE

(CONS 'TI
{CONS 'RESET-
(APPEND (INDICES ’SENSE 0 N)
(APPEND (INDICES ‘PO O N)
(APPEND (INDICES ‘Pl 0 N)
(INDICES ‘P2 0 N))))))))

(APPEND SR

(INDICRS ‘00 0 N)
(APPEND (INDICES 'Ol O W)
(APPEND (INDICES 'O2 O0N) L
(APPEND (INDICES "ACT-MAJ-EXISTSP 0 3)
(APPEND (INDICES ‘A0 0 N)
(APPEND (INDICES ‘Al 0 N)
(APPEND (INDICES 'A2 O N)
' (INDIZEY 'A3 0 N)))N))Y)

(LIST
" {CNT (CO C1 C2)
COUNTER3
(CLK TE TI RESET-))
* (G0 (SO S1WEAK S2WRAK S3 S4 SS5)
SPLIT-3-T0-6
(CO €1 C2))
* (GOA (S1) B-BUF-PWR (S1WRAK))
' {60B (S2) B-BUF-PWR (S2WEAK))
(LIST ’'MATRIXO
(APPEND (INDICES ‘MO0 O N)
(APPEND (INDICES 'NO1 0 N) .
(INDICES 'NO2WEAK O N)))
(INDEX 'REGS3 N)
(CONS ' CLK
(CONS 'TE
(CONS 'C2
(APPEND (INDICES 'MOOV 0 N)
(APPEND (INDICES ’'MO1V 0 N)
(INDICES 'MO2V 0 N)})))))
(LIST ’MATRIXOA
(INDICES ’'M02 0 N)
(INDEX ’'V-BUF-PWR N)
(INDICES ’'NO2WRAK O N))
(LIST ’'MATRIX1 o
(APPEND (INDICES ‘M10 O N)
(APPEND (INDICES ‘M1l O N)
(INDICES ‘M12 0 N)))
(INDEX ‘REGS3 N)
(CONS ’CLK
(CONS 'TE
(CONS (INDEX ’'M02 (SUBl N))
(APPEND (INDICES 'M10V 0 N)
(APPEND (INDICES 'M11V 0 N)
(INDICES 'N12V 0 N)))))))
(LIST ’'MATRIX2
(APPEND (INDICES ’'M20 0 N)
(APPEND (INDICES ‘M21 0 N)
(INDICBS ‘M22 0 N)))
(INDEX ‘'REGS3 N)
(CONS ’CLK
{CORS TR
(CONS (INDEX 'M12 (SUBlL N))

(APPEND (INDICEBS ’‘'M20V 0
(APPEND (INDICES
(INDICES
(LIST ‘DATA-OUT
(APPEND (INDICES ‘00 O N)

N)
'M21V 0 N)
'M22V 0 M))))

L It

[

RN -

T I

i

ol |

LK
o

i

(APPEND (INDICES ‘0l 0 W)
(INDICES '02 0 W)))
(INDEX ’REGS3 N)
{CONS ' CLK
(CONS ‘TR
(CONS (INDEX ’'M22 (SUB1l N))
(APPEND (INDICES 'OOV O N)
(APPEND (INDICES ’'O1lV 0 N)
(INDICES ‘02V 0 N)))))))
{LIST 'ICV-REG
(APPEND (INDICES ‘'ICVO 0 N)
(APPEND (INDICES 'ICV1 0 W)
(APPEND (INDICES ‘ICV2 0 N)
(INDICBS ‘ICV3 0 N))))
(INDEX ‘REGS4 N)
(CONS ' CLK
(CONS 'TE
(CONS (INDEX '02 (SUBl W))
(APPEND (INDICES ’'ICVOV 0 N)
(APPEND (INDICES ’'ICV1V 0 N)
(APPEND (INDICES ’'ICV2V 0 N)
(INDICES ‘ICV3V 0 N))))))))
(LIST 'ACT-REG
(APPEND (INDICES 'R0 O N)
(APPEND (INDICES ‘Al O N)
(APPEND (INDICES 'A2 0 N)
(INDICES ‘A3 0 N))))
(INDEX ‘REGS4 N)
(CONS ' CLK
(CONS 'TR
(CONS (INDEX 'ICV3 (SUBl1 N))
(APPEND (INDICRS 'AOV 0 N)
(APPEND (INDICES 'AlV O N)
(APPEND (INDICES 'A2V O N)
(INDICRES 'A3V 0 N))))))})
(LIST 'ICV-MAJ-EXISTSP-REG
(INDICES ’ICV-MAJ-EXISTSP 0 3)
(INDEX ’'REG 3)
(CONS ’CLK
{CONS ' TR
(CONS (INDEX ‘A3 (SUBL N))
(INDICES ’ICV-MAJ-EXISTSPV 0 3)))))
(LIST ’ACT-MAJ-EXISTSP-RRG
(INDICES ’'ACT-MAJ-RXISTSP 0 3)
(INDEX 'REG 3)
(CONS ’CLK
(CONS 'TB
(CONS (INDEX ’'ICV-MAJ-EXISTSP 2)
(INDICES 'ACT-MAJ-EXISTSPV 0 3)))))
{LIST 'Gl
(INDICES 'O0V 0 N)
(INDEX 'TV-IF3 N)

(CoNs 'S0
(APPEND (INDICES 'SENSE 0 N)
(CONS 'Sl
(APPEND (INDICES 'P1 O N)
(CONS 's2
(APPEND (INDICES ‘'MO2 O N)
(INDICES ‘00 0 N))))))))
{LIST 'G2

(INDICES ‘O1lV O N)
(INDEX ‘TV-IF3 N)

(CONS 'S80
(APPEND (INDICES ’'SENSE 0 N)
(CONSs ‘S1
(APPEND (INDICRS 'PO O N)

(CONS /82
(APPEND (INDICES ‘K02 0 N)
(INDICES ‘01 0 M))))))))

(LIST 'G3 -
(INDICES '02V 0 N)
(INDEX ' TV-IF3 N)
(Co¥s 80)
(APPEND (INDICES 'SENSE 0 N) —
(CONS ’S1 L
(APPEND (INDICES ‘PO O N)
(CONS ’s2
(APPEND (INDICES MOl 0 W) =
(INDICES ‘02 0 N)))))))) [
(LIST ’GA4-MOOV
(INDICES ’'MOOV 0 N)
(INDEX ’TV-IF -
(TREE-NUMBER (MAKE-TRER W))) o
(CONS ‘81
(APPEND (INDICES 'PO O N)
(INDICES "MOO 0 N)))) —
(LIST ’G4-MOLV =

(INDICES ’'M01V 0 N)
(INDEX ’'TV-IF

(TREZ-NUMBER (MAKE-TREE N)))
{CONS '51 .

(APPEND (INDICES ‘Pl 0 W) L
(INDICES ‘MOl 0 N))))

(LIST ’G&-NO2V _
(INDICES 'MO2V 0 N) _—
(INDEX 'TV-IF =

(TREE-NUMBER (MAKE-TREE N)))
(CONS ’ 51

(APPEND (INDICES ‘P2 O N) _
(INDICRS 'M02 0 N))))

(LIST 'G5-M10V
(IWICES ’HIOV 0 N)
(INDEX 'TV-IF
(TREE-NUMBER (m rm x)))
(CONS 'S2
(APPEND (INDICES 'PO O N)
(INDICES 'M10 O N))))

(LIST ‘GS5-MI1V
{INDICES ‘M11V 0 N)
(INDEX ' 1V-IF
(TREE-NUMEZR (MAXE-TREZ N)))
(CONS ‘S2
(APPEND (INDICES ‘Pl O N)
(INDICRS 'Mll 0 N))))

(LIST ’G5-M12V -
(INDICES ‘W12V O N)
(INDEX ’TV-IF -
{TRRE-NUMBER (MAKE-TREE N)))
(CONS 'S2
“(APPEND (INDICES 'P2 0 N)
{INDICES 'Ml2 O N))))

o
S 'M20V O W)
(THDRX ' TV-1F
{TREQ-NUMBRR (MAKE-TREE N)))
(cows ‘83
" (APPEMD (INDICRS ‘PO 0 W).

(IﬂDIC!S ‘M20 O N)

(LIST ‘G

(LIST 'GE-MI1V
(INDICRS 'M21V 0 N)
(INDEX "TV-IF
(TRER-NUMEER (mn -TREE N)))
(CONS 783 e
(ABPEND (INDICES ‘Pl 0 N)
(INDICES 'M21 0 N)))) - - --

(LIST ’G6-M22V -

(INDICES 'M22V 0 N)
(INDEX

L]

U

|yn1
|

l\MII“
Ay

!

w

Wi

[

f

(LIST

(LIST

(LIST

(LIST

(LIST

(LIST

(LIST

(LIST

(LIST

(LIST

(TRER-NUMBER (MAKE-TREE N)))
(CONS ’83
(APPEND (INDICES ‘P2 O N)
(INDICES 'M22 0 N))))
'G7
(CONS (INDRX ' ICV-MAJ-EXISTSPV1 0)
(INDICES 'MJRTYO 0 N))
(INCEX ‘MAJORITY3 N)
(AEFEND (INDICES 'M0O0 0 N)
(APPEND (INDICES ‘W12 0 N)
(INDICES ‘M21 0 W))))
'G8
(CONS (INDEX ’'ICV-MAJ-EXISTSEV1 1)
(INDICES ’'MJRTY1 O N))
(INDEX ‘MAJORITY3 N)
(APPEND (INDICES ‘MOl 0 N)
(APPEND (INDICES 'M10 O N)
(INDICES 'M22 0 W))))
'G9 -
(CONS (INDEX ' ICV-MAJ-EXISTSPV1 2)
(INDICBS ’'MJRTY2 O N))
(INDEX ’'MAJORITY3 N)
(APPEND (INDICES 'M02 0 N)
(APPEND (INDICES ‘M1l 0 N)
(INDICES 'M20 0 N))))
*G1l1-ICVOV
(INDICES ’'ICVOV 0 N)
(INDEX ‘TV-IF
{(TREE-NUMBER (MAKE-TREE N)))
(CONS 'S4 '
(APPEND (INDICES ’'MJRTYO 0 N)
(INDICES 'ICVO 0 N)))) ™
'Gll-ICV1V
(INDICES ’'ICV1V 0 N)
{INDEX 'TV-IF T
(TREE-NUMBER (MAKE-TREE N)))
(CONS 'S4
(APPEND (INDICES ’‘MJRTY1l 0 N)
(INDICES 'ICV1 0 N))))
'Gl1-ICV2V i R
(INDICRS ’'ICV2V 0 N)
(INDEX ‘TV-IF
(TREE-NUMBER (MAKE-TREE N)))
(CONS 'S4
(APPEND (INDICES ‘MJRTY2 0 N}
(INDICBS 'ICV2 0 N))))
rG11-ICVav
(INDICBS ’'ICV3IV 0 N)
(INDEX 'TV-IF
(TREZ-WUMBER (MAKE-TREE N)))
(CONS 'S80
(APPEND (INDICES ’'SENSE 0 N)
(INDICES 'ICV3 0 N))))
*Gl2-A0V
(INDICES ‘AOV 0 N)
(INDEX '’ YV-IF
(TREE-NUMBER (MAKE-TREE N)))
(CONS ’85
(APPEND (INDICES ’'ICVO 0 N)
T (INDICES ‘A0 T W))))
'612-A1V Co e s
(INDICES ’AlV 0 N)
(INDEX ‘TV-IF
(TREE-NUMBER (MAKE-TREE N)))
(CONS ’85 - o
(APPEND (INDICEBS 'ICV1 O N)
(INDICRS ‘Al 0 N))))
'G12-A2V
(INDICES 'A2V 0 N)

26

)l

27

{INDEX 'TIV-IF

(TRRE-NUMBER (MAKE-TRER N)))
(CONS 'S5

(APPEND (INDICES 'ICV2 0 N)

(INDICES 'A2 0 N))))]

(LIST ’412-A3V)
(INCICES ‘A3V 0 N)

(INLEX ’TV-IF -

(TREE-NUMBER (MAKE-TREE N))) =

(CONS 'S5
(APPEND (INDICES ‘ICV3 0 N)
(INDICES 'A3 0 N))))
(LIST ’‘Gl2-ACT-MAJ-EXISTS
(INDICES ’'ACT-MAJ-BRXISTSPV 0 3)
(INDEX 'TV-IF
(TREE- HUHBER (m rm 3)))

(CONS 'S5 = =
(APPEND (INDICES ' ICV-MAJ-EXISTSP 0 3 B
(INDICES ’ACT-MAJ-EXISTSP 0 3))))

(LIST 'G13 .
(INDICRS ’ICV-MAJ-EXISTSPV 0 3) - —
(INDEX 'TV-IF »

(TREE-NUMBER (MAKE-TREE 3)))
{(CONS 'S4
(APPEND (INDICES ' ICV-MAJ-EXISTSPV1 0 3). =
(INDICES "ICV-MAJ-EXISTSP 0 3))))) i

’ (CNT MATRIX0 MATRIX1 MATRIX2 DATA-OUT ICV-REG ACT-REG
ICV-MAJ-EXISTSP-REG ACT-MAJ-EXISTSP-REG))

Appendix C. The NDL for LSTEP_8

Below we display part of a netlist that has been proved (by construction) to implement 1ocal-step fora
data path width of 8. The syntax of the display is NDL, the Netlist Description Language of LSI Logic Inc.
The complete netlist occupies about 9 pages.

MODULE LSTEP_8:
INPUTS CLK,TE, TI,RESET-,SENSE.0, SENSR.1, SENSE. 2 SENSE. 3 SENSE 4,SENSRE. 5,

SENSE. 6, SENSR.7,P0.0,P0.1,P0.2,P0.3,P0.4,P0.5,P0.6,P0.7,P1.0,P1.1,
P1.2.P1.3,P1.4,P1.5,P1.6,P1.7,P2.0,92.1,P2.2,P2.3,P2.4,P2.5,P2.6,P2.7;
OUTPUTS ©0.0,00.1,00.2,00.3,00.4,00.5,00.6,00.7,01.0,01.31,01.2,01.3,01.4,

01.5,01.6,01.7,02.0,02.1,02.2,02.3,02.4,02.5,02.6,02.7,
ACT-MAJ-EXISTSP. 0, ACT-MAJ-EXISTSP.1, ACT-MAJ-EXISTSP.2,A0.0,A0.1,A0.2,
A0.3,A0.4,A0.5,A0.6,A0.7,A1.0,A1.1,A1.2,A1.3,A1.4,A1.5,A1.6,A1.7
A2.0,A2.1,R2.2,A2.3,A2.4,A2.5,42.6,A2.7,K3.0,A3.1,A3.2,A3.3,A3.4, =
A3.5,A3.6,A3.7; -

LEVEL PUNCTION;

DEFINE -

CNT (C0,C1,C2) = COUNTER3 (CLK, TE, TI, RESRT-) ; =

G0 (S0, SIWRAK, S2WRAK, S3, S4,85) = SPLIT-3-TO-6(C0,Cl1,C2);

GOA(S1) = B-BUP-PWR (S1WRAX) ; -

GOB(S2) = B-BUF-PWR (S2WEAK);

MATRIXO (NOO.0,M00.1,M00.2, M00.3, M00. 4, N0O.5, HD0. 6, X00.7, M01.0, NO1.1, 401 .2, —
MO1.3,M01.4,X01.5,01. €, MO .7, MOZWRAK. 0, MO2WEAK. 1, MOZWEAK. 2, -
MOZWRAK. 3, MOZWRAK. 4, MOZWRAK. 5, MOZWEAK. 6, KOZWRAK. 7) =

= REGS3_8 (CLK, TR, C2, NOOV. 0, MOOV.1,NOOV. 2, MOOV. 3, MOOV. 4, NOOV. 5, MOOV. 6,
MOOV.7,MOLV. 0, MO1V.1, MO1V.2, NO1V. 3, NO1V. 4, MOIV. 5, KO1V. 6, MO1V. 7, —
NO2V.0,M02V.1,M02V.2,M02V.3, K02V . 4, M02V. 5, M02V . 6, M02V. 7} ; =
MATRIXOA (NO2.0,M02.1,M02.2, M02.3, H02. 4, 02.5,M02. 6, H02.7) -

= V-BUF-PWR_8 (MO2WEAK. 0, MO2WEAK.1, NO2WEAK.2, MO2ZWEAK. 3, HOZWEJ\K 4)(OZWBL'K 5,
MO2WRAK. 6, NOZWEAKX. 7) ;
mmxunoonuo:tuozmoanoquosnosnuovunouulunz

mjmill(IlSiﬁlgﬂIVlﬁZUmllﬁfI)ﬁ!S)ﬂzl)ﬂJS
Ml2.6,M2.7)
= REGS3_8(CLK, TR, ¥02.7,M10V.0,M10V.1 N1O0V.2 M10V.3,M10V.4 M1OV.5,MIOV.6,
© M10V.7,M117V.0,M11V.1,M11V.2,M11V.3,M11V. 4, M11V.5,M11V.6,M11V.7, =
M12V.0,M12V.1 M12V.2 W12V.3 ,MI12V.4 M12V.5 M12V.6,M12V.7); %

m
.

|

juam

1y
i

(.

1

MATRIX2 (M20.0,M20.1,H20.2,M20.3,M20.4,M20.5,
M21.3,M21.4,M21.5,M21.6,M21.7,M22.0,
M22.6,M22.7)

= REGS3_8 (CLK, TR, M12.7,M20V.0, M20V.1,6M20V.2, N20V.3, M20V.4,M20V.5, M20V. 6.
N20V.7,M21V.0, N21V.1,N21V.2,M21V.3,M21V.4,N21V.5 M21V. 6, M21V.7,
uzzvouzzv1u22v2u22vsu22v4n22vsu22vsuzzvv)

m\u-our(oo.o,oo.1,oo.2,oo.3,oo.4,oo.5,oo.s,oo.7,01.0,01.1.01.2,01.3,01.4,
¢1.5,01.6,01.7,02.0,02.1,02.2,02.3,02.4,02.5,02.6,02.7)

= REGS3_8 LK, TE, M22.7,00V.0,00V.1,00V.2,00V.3,00V.4,00V.5,00V.6,00V.7,
0lV.0,01V.1,01V.2,01V.3,01V.4,01V.5,01V.6,01V.7,02V.0,02V.1,
02V.2,02V.3,02V.4,02V.5,02V.6,02V.7) ;

ICV-REG (ICV0.0, ICV0.1,ICV0.2,ICV0.3,ICV0.4,ICV0.5, ICV0.6,ICV0.7,ICV1.0,
ICV1.1,ICV1.2,ICV1.3,ICV1.4,ICV1.5,ICVL.6,ICV1.7,ICV2.0,ICV2.1,
ICv2.2,ICv2.3,ICV2.4,ICV2.5,ICV2.6,ICV2.7,ICV3.0,ICV3.1,ICV3. 2,
ICV3.3,ICV3.4,ICV3.5,ICV3.6,ICV3.T)

= REGS4_8 (CLK, TE,02.7, ICVOV.0, ICVOV.1, ICVOV.2, ICVOV. 3, ICVOV. 4, ICVOV. S5,
ICVOV. €, ICVOV. 7, ICV1V.0,ICV1V.1,ICV1V.2, ICV1V.3, ICV1V. 4, ICV1V. 5,
ICV1V. 6, ICV1V.7,ICV2V.0,ICV2V.1,ICV2V.2, ICV2V.3, ICV2V. 4, ICV2V.5,
Icvzv.s,rcvzv.7,Icv3v.o,1cv3v'.1,:cvav.z,‘xi:vsv.a,:cvav.c,xcvav.s,
ICV3V.6,ICV3V.7);

G9 (ICV-MAJ-EXISTSPV1.2, MJRTY2. 0, MJRTY2.1, MJRTY2. 2, MJRTY2. 3, MJRTY2. 4, NJRTY2. 5,

MJRTY2. 6, MJRTY2.7)

= MAJORITY3_8 (MO2.0,M02.1,M02.2,M02.3,M02.4,M02.5,M02.6,402.7,M11.0,Md1.1,

u112n13u114n11su116m17n200u201n202n203
M20.4,M20.5,M20.6,M20.7);

G11-ICV2V(ICV2V.0,ICV2V.1,ICV2V.2, ICV2V.3, ICV2V. 4, ICV2V.5, ICVaV. 6, ICV2V.7)

= TV-IP_8(S4,MJRTY2.0, MJRTY2.1, MJRTY2.2, MJRTY2.3, MJRTY2.4, MORTY2.5,

: u.mr!zsmwzvxcvzoxcvzlxcvzzzcvz3rcv24zcv25

ICV2.6,ICV2.7);

611-ICV3V(ICVaV.0,ICV3V.1,ICVaV.2, ICV3V.3, ICV3V. 4, ICV3V. 5, ICV3V. 6, ICVIV.7)

= TV-IF_8 (SO, SENSE.O, SENSE.1, SENSE.2, SENSR.3, SENSE. 4, SENSE.5, SENSE. 6,
SENSE.7,ICV3.0,ICV3.1,ICV3.2,ICV3.3,ICV3.4,ICV3.5,ICV3.6,ICV3.7);

G12-A3V(A3V.0,A3V.1,A3V.2,A3V.3,A3V. 4, A3V.5,A3V.6,A3V.7)
= TV-IF_8($5,6ICV3.0,ICV3.1,ICV3.2,ICV3.3,ICV3. 4, ICV3.5,ICV3.6,ICV3.7,A3.0,
A3.1,A3.2,A3.3,A3.4,A3.5,A3.6,03.7);
G12-ACT-MAJ-EXISTS (ACT-MAJ-EXISTSPV. 0, ACT-MAJ-RXISTSPV.1, ACT-MAJ-EXISTSPV. 2}
= TV-IP_14 (85, ICV-MAJ-EXISTSP.0, ICV-MAJ-EXISTSP.1, ICV-MAJ-EXISTSP.2,
ACT-MAJ-EXISTSP.0, ACT-MAJ-EXISTSP .1, ACT-MAJ-EXISTSP.2);
G13 (ICV-MAJ-EXISTSPV. 0, ICV-MAJ-EXISTSPV.1, ICV-MAJ-EXISTSPV.2)
= TV-IF_14(S4, ICV-MAJ-EXISTSPV1.O, ICV-MAJ-EXISTSPV1.1, ICV-MAJ-EXISTSPV1.2,
ICV-MAJ-EXISTSP.0, ICV-MAJ-EXISTSP.1, ICV-MAJ-EXISTSP.2):
END MODULE;

MODULE SPLIT-3-TO-6;
INPOUTS CO,C1,C2;

OUTPUTS §0,81,82,83,84,85;
LEVEL FUNCTION;

DEFINE

GO(NCO) = IVA(CO):

Gl (MCl) = IVA(Cl):

G2 (NC2) = IVA(C2):

G3(S0) = AN3(NCO,6NC1,NC2);
G4(S1) = AM3(CO,NC1,6NC2);
G5(82) = AM3(NCO,Cl,NC2);
G6(83) = AN3(CO0,Cl,NC2);
G7(84) = ANI (NCO,NC1,C2);
G8(85) = AN3(CO,NC1,C2):
END MODULR;

NODULE MAJORITY3_8;

INPUTS X.0,X.1,X.2,X.3,X.4, .
2.1,2.2,2.3,2.4,2.5,2.6,2.7;

OUTPUTS MAJ-EXISTSP,A.0,A.1,A.2,A.3,A.4,A.5A.6,A.7;

LEVEL FUNCTION;

DRFINE

GO (E0)

X.5,X.6,X.7,Y.0,¥.1,Y.2,Y¥.3,Y.4,Y.5,Y.6,Y.7,2.0,
2.6,2.7;

29

= V-BQUAL_B(x.0,X.1,x.2,x.3,x.4,x.5,x.G,x.'l,Y.O,Y.l,Y.Z,Y.J,Y.‘I,Y.S,!.G,
¥.7):
Gl(Bl)
-V-lQUAL_S(XOXlXZXSXlX51(6!720212223242523;
2.7);
G2 (B2)
= V-EQm_B(Y.O,Y.I,Y.Z,Y.3,Y.4,Y.5,Y.G,Y.7,2.0,2.1,2.2,2.3,2.4,2.5,Z.6,
Z2.7):
GZL(ZERO.U,A'LRO.I,Z!RO.2,Z!RO.3,ZZRO.‘,Z!RO.5,ZZRO.S,ZRRO.T)
= v—xon_a(x.o,x.1,x.2,x.3,x.4,x.5,x.s,x.v,x.o,x.l,x.z,x.3,x.4,x.5,x.s,x.7),-

G3 (MAJ-EXISTSP) = OR3(EO,El,E2):
G4(c.0,¢.1,€.2,¢.3,€.4,C.5,C.6,C.7)
=1’V-I!'3(E2Y0,Y1Y2!3Y4Y5YSY'IZEROOZI'.ROIZBROZZERO3
ZERO. 4, 2ERO.5, 2ER0. 6, ZBRO.7) ;
65(8.0,B.1,B.2,8.3,B.4,B.5,B.6,B.7)
= w-zr_a(g;,x,o,x.1,x.2’;x.3',3i.4,x.s.x.s,x.v,c.o,c.1,c.2,c.3,c.t,c.s,c.s,
C.T); ’
G6(AR.0,A.1,AJ2,A.3,A.4,A.5,R.6,A.7)
= TV-IF_8(E0,X.0,X.1,X.2,X.3,X.4,X.5,X.6,X.7,B.0,8.1,B.2,B.3,B.4,B.5,B.6,
B.7):

Appendix D. Mechaniéally Produced Schematics

Below we show the schematics produced by LSI Logic, Inc.’s design tool “‘liberate’’ from the NDL in
Appendix C. We include the schematics for' incrmt3, majority3 and lstep g8 only. These
schematics are exhibited to emphasize the point that the NDL produced from our verified design can be
processed by commercial design tools. This copyrighted material is used with the permission of LSI Logic,

Inc.

|‘ T \IIII I!IIH \I IHHIIHM ;i il al W

)

Y

)

-

o it
U

W i

IB)~3dxL
[8)=3dAL
18)=33XL

le)=34XL JSISIXA
[B)=3daL

{8)~3d4AL
i8)=34A1
(8)=3d41

1o 13 {—<

o 4L <

A|oO ASNAS < |p)=3dAL
OYW S Ibhv 1dS3d C

iy + za [iet-aan

“—py 1d X 1sl=3dx

All:m 0d =< (g)~3dAL

v 1o [

‘NOILYJO4dO0D O

TQIAYIASEY SLHOIY TIV

I90T IST Ad 8861°L861°9861T LHDIUAJOD

"NOILYH04d0d DOID0T IST 40 MYVWAAVYL ¥ SI ddsT

LHDITAIAJOD

i

Y B i

b

‘ 20
N OO

N N N

/N
O

/N

QN

NN
O/

PP R il §

S

Wi

|

¢l

/N

gy
' ,—

LR
i ,:_-

il

(L] ,ﬁm
1 b
W i

N

N

L1

/N

Ol

N

, e ey v E I I T R Sy B 11— W anilhnn o NI Y iy oI 10 TR ELLI TR R T I P U R e oo e 1) I
, _ | : , , I | .
N | [| R) [1 I T e e e s e ,] W

ASLSIXT | PVIW - g—=< [g]=m:axs
[81="dA — v +

1
;

I
]
a¥
S
e

S CALINOLYIN

o

P
~

ASLSIXA LYW

'y

"

[P

[Bl=ddAL ,
UJ AN
03 + roreveer Z
8 1YNdd A 189) — _ N s Ltk LIS
401 + vererer _ A
. ga-{elex|
8 Tvnda A 8
c+c m+c ¢) _+ _ N¢ om0) -34AL
e — ™ e — e — MR S Iy X
- — — — Jdox
JdI AL 8 aIx AL 8 J4I AL 8

33

[8)=HdxL
[8]=adxL
[8)=3dxL
[€)=04dxL
(8]=ddAL
(8)=HdxL
[8)=3dxL
(8]=4dxL

B m

dSLSIXH

T e e

i

40,
1O
00

LY

8

DY
£
A4
Y
94

1L
AT
ASNES
LIS
+ za
T4

0d
MO

LILLLLL

o' 11100717

HLS'T

[T W L

[8]=HdAL

[8)=0dxL
[8)="dxlL
[8)=3dXxL

| A)

[Ny Iy
i
i

T 1AL VU ey)1
T

- } oly ol et sy s s sl] L e i
BB R BE B BELEERIIGE BN BN GEIEE
. s
_ __J I
[
!
}
- LTINS B N i
_ N i I L
- B i ! 1
IR L ol Bl e
efif off |a] flla ef “qHe] L] {0e
=
= 3
B i .
=) ‘ '7 EI
J 1] i
i~ . I
| Ll
p
i ir=
i v
- M i
:7_ .

=

o
il

i}

37

References

1. W.R. Bevier and W.D. Young. The Proof of Correctness of a Fault-Tolerant Circuuc 1 -ign.
Proceedings of the Second International Working Conference on Dependable Computing for Critical
Applicatiens, February, 1991, pp. 107-114.

2. R. S BoverandJ S. Moore. A Computauonal Logic Handbook. Academic Press, New York, 1988.

3. BC. Brock and W A, Hunt A Formal Introduction to a Sunple HDL In Formal Methods for VLSI
Design, J. Staunstrup, Ed., Elsevier Science Publishers B.V. (North-Holland), 1990, pp. 285-329.

4. J S. Moore. A Formal Model of Asynchronous Communication and Its Use in Mechanically Verifying a
Biphase Mark Protocol. Tech. Rept. NASA CR-4433, NASA, 1992,

5. M. Pease and R. Shostak and L. LamporL "Reachmg Agreemem in the Presence of Faults”. Journal of
the ACM 27,2 (1980), 228-234. =+~

6. J. Rushby and F. von Henke. Formal Verification of the Interactive Convergence Clock
Synchronization Algorithm using EHDM. Tech. Rept. SRI CSL 89-3R, Computer Science Laboratory,
SRI International, Menlo Park, CA 94025, January, 1989.

7. D.E. Thomas and P. Moorby The Venlog“‘ Hardware Descrzptwn Language Kluwer Academic
Publishers, 1991.

. ' . " .

{

T

I

l”
L

"

{

Wil

p
i

il

"
]

i

i

Form Sgproved

REPORT DOCUMENTATION PAGE SMB No 1734.0138

Do~ emport ot oLmzee TS ATuIe 1T STUImAT AL gl WATAZ I aavaiAe sar-

I3
P dal_ L

S S I R T PEE

R P DR}

T AGENCY USE ONLY (Leave biarx, |2 REPORT DATE 3. REPORT TYPE AND DATES COVERED
U 1992 Contractor_ Report

prm— - Pk

‘ 1T " Tie AND TLRTIE o 5. FUNTINT NUMBERS

" Mechanically Verified Hardware Implementing an 8-Bit C NAS1-18878

| Parallel IC Byzantine Agreement Processor WU 505-64-10-05

6. ALTrDE S

J Strother Moore

7. PERFORNING DRGANIZATICN NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
. . REPORT NUMBER

Computational Logic, Inc.

1717 W. Sixth Street, Suite 290 TR-69

Austin, TX 78704

3. SPCNSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10, SPONSORING MONITORING
) . . . AGENCY REPORT NUMBER

National Aeronautics and Space Administration v

Langley Research Center NASA CR-189588

Hampton, VA 23665-5225

11. SUPPLEMENTARY NOTES ,
Langley Technical Monitor: Ricky W. Butler
Task 3 Report

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION COOE

Unclassified-Unlimited
Subject category 62

13. ABSTRACT (Maximum 200 words)

Consider a network of four processors that use the Oral Messages (Byzantine Generals)
algorithm of Pease, Shostak and Lamport to achieve agreement in the presence of
faults. Bevier and Young have published a functional description of a single process-
or that, when intercomected appropriately with three identical others, implements
this network under the assumption that the four processors step in synchrony. By
formalizing the original Pease, etal work, Bevier and Young mechanically proved

that such a network achieves fault tolerance. In this paper we develop, formalize
and discuss a hardware design that has been mechanically proved to implement their
processor. In particular,we formally define mapping functions from the abstract

state space of the Bevier-Young processor to a concrete state space of a hardware
module and state a theorem that expresses the claim that the hardware correctly
implements the processor. We briefly discuss the Brock-Hunt Formal Hardware
Description Language which permits designs both to be proved correct with the
Boyer-Moore theorem prover and to be expressed in a commercially supported hardware
description language for additional electrical analysis and layout. We briefly
describe our implementation.

14. SUBJECT TERMS _ __]] 15. NUMBER OF PAGES
hardware verification, fault tolerance, Byzantine agreement, 41
Oral Messages algorithm, automatic theorem proving, e PRICE CODE
Boyer-Moore Logic.
17. SSE{::?}%LASS'HCAUON 18, SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
PQRT . OF THIS PAGE OF ABSTRACT
Unc¢lassified e
Unclassified
NSN 7520-0 " -080-3309 Stardarc form 298 ‘Rev 189

Seagcr pag T, SNS 3 U343
298172

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions ‘or filling in each biock of the form follow It is important to stay within the lines to meet

optical scanning requirements.

Block 1 Age~cy .se Orly(legve blank).

Block 2. 2epc~ Date “ . publicatordate
irciucirg day, month, and year, if avaiable (e.g. !
jan 88) Mustcte atreastire year

Block 3. Type of Repcr: ang 2ates Covered
State whetrerrescrt s ntenm, final, etc if
appiicable, enter .ncius «2 report dates (e.g. 10
Jun 87 - 30 Jur 38).

Block 4, Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningful and complete nformation. When a
report s prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitie for the specific volume. On
classified documents enter the title classification
in parentheses

Block 5. Funding Numbers. Toinclude contract
and grant numbers; may include program
element number(s), project number(s), task
number(s), and work unit number(s). Use the
following iabels:

C - Contract PR - Project

G - Grant TA - Task

PE - Program WU - Work Unit
Eiement Accession No.

Block 6. Author{s) Name(s) of person(s)
responsibie for writi- g the report, performing
the research, or credited with the content of the
report. If editor © compiler, this should follow
the name(s)

Block 7. Performing Organization Name(s) and
Address{es) Self-explanatory.

Block 8. Performing Qrganization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s)
and Address{es) Self-explanatory.

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11, Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans. of . ; To be
published in... When areportisrevised, include
astatement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Svatei~ent
Denotes public avallabdity or im:tat.ors. 212 any
availability to the public. Enter additiona!
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR)

DOD - SeeDoDD 5230 24, "Distribution
Statements on Technical
Documents.”

DOE - See authorities.

NASA - See Handbook NHB 2200 2.

NTIS - Leave blark.

Block 12b. Distribution Code.

DOD - Leave blank.

DOE - Enter DOE distribution categories
from the Standard Distribution “or
Unclassified Scientific and Technical

' Reports.

NASA - Leave blank.

NTIS - Leaveblank.

Block 13. Abstract. Include abrief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e,
UNCLASSIFIED). if form contains classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. Thisblock must
be completed to assign a limitation to the
abstract. Enter either UL (uniimited) or SAR (same
as report). An entry in this block is necessary if
the abstractis to be limited. If blank, the abstract
is assumed to be unlimited.

Standarg Zarm 298 Bracx-";i.'ev 2-89!

(I, (N L

i |

